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Impact statement
Prohibitin (PHB) is ubiquitously expressed

and plays a role in adipocyte-immune cell

cross-talk. Both male and female trans-

genic mice expressing wild-type PHB in

adipose tissue and in macrophages are

obese, but only males develop diabetes

and liver cancer. When the mice express

PHB mutated on tyrosine-114 in adipo-

cytes and macrophages, both males and

females are still obese, but none develops

liver cancer; instead, males develop lymph

node tumors. Adipocyte specific functions

of PHB are mediated through its mito-

chondrial function, whereas its immune

functions are mediated in a phosphoryla-

tion-dependent manner. Thus, PHB

appears to be an important molecule link-

ing obesity, diabetes, and cancer. In add-

ition, this link appears to be affected by sex

steroids. Therefore, targeting PHB may

lead to a better understanding of the

pathogenesis of obesity, diabetes and

cancer.

Abstract
The promoter of a gene that is selectively expressed in just a few cell types provides unique

opportunities to study: (1) the pleiotropic function of a protein in two different cell types

including the cell compartment specific function, and (2) the crosstalk between two cell/

tissue types at the systemic level. This is not possible with a ubiquitous or a highly specific

gene promoter. The adipocyte protein-2 (aP2) is one such gene. It is primarily expressed in

adipocytes, but also selectively in monocytic macrophages and dendritic cells, among vari-

ous immune cell types. Thus, the adipocyte protein-2 gene promoter provides an oppor-

tunity to simultaneously manipulate adipose and immune functions in a transgenic animal.

Prohibitin (PHB) is a pleiotropic protein that has roles in both adipocytes and immune cells.

Adipocyte specific functions of prohibitin are mediated through its mitochondrial function,

whereas its immune functions are mediated in a phosphorylation-dependent manner. We

capitalized on this attribute of prohibitin to explore the crosstalk between adipose and

immune functions, and to discern mitochondrial and plasma membrane-associated cell

signaling functions of prohibitin, by expressing wild type prohibitin (Mito-Ob) and a phos-

pho-mutant form of prohibitin (m-Mito-Ob) from the protein-2 gene promoter, individually.

Both transgenic mice develop obesity in a sex-neutral manner, but develop obesity-related

metabolic dysregulation in a male sex-specific manner. Subsequently, the male Mito-Ob

mice spontaneously developed type 2 diabetes and liver cancer, whereas the male m-Mito-Ob mice developed lymph node

tumors or autoimmune diabetes in a context-dependent manner. This review provides a point of view on the role of prohibitin in

mediating sex differences in adipose and immune functions at the systemic level. We discuss the unique attributes of prohibitin

and provide a new paradigm in adipose-immune crosstalk mediated through a pleiotropic protein.
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Introduction

PHB belongs to the SPFH (stomatins, flotillins, and HflK/C)
family of proteins, which share an evolutionarily conserved
SPFH domain (also known as PHB domain).1 The members
of the SPFH family of proteins are evolutionarily conserved
and ubiquitously expressed.2 PHB was discovered in a
search for anti-proliferative genes—hence the name ‘prohi-
bitin’3—and localizes to the plasma membrane,4 mitochon-
dria5 and the nucleus.6 Subsequently, a homologous protein
with almost 50% sequence homology with PHB was identi-
fied as a repressor of estrogen activity (REA, also known

as PHB2).7 After the discovery of PHB2, PHB gets its alter-

nate name PHB1.1,8 The prohibitins were also identified in a

separate study as B cell membrane-associated proteins

(BAP)-32 and -37, based on their molecular masses.4

However, B cell specific function of BAP32 (PHB or PHB1)

and BAP37 (REA or PHB2) remained largely unexplored.

Early evidence of mitochondrial localization of PHB came

from studies on baby hamster kidney cells (BHK1) and

Saccharomyces cerevisiae.5,9 In mitochondria, PHB1 and

PHB2 localize to the inner membrane, where they hetero-

dimerize and function as a mitochondrial chaperones.10,11
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In addition, prohibitins localize to the plasma membrane
and the nucleus, where they have roles in membrane sig-
naling and transcriptional co-regulation, respectively.4,7,12

In the membrane, PHB has been shown to be involved in
PI3K-Akt, MAPK-ERK, and STAT3 signaling pathways in
cells/tissues involved in metabolic regulation and immune
functions.12–14 The membrane signaling functions of PHB
involve phosphorylation and other posttranslational modi-
fications of PHB, such as palmitoylation and glycosylation
at different residues.15–18 In addition to membrane signal-
ing, the posttranslational modification of PHB appears to be
involved in the trafficking of PHB in different cellular com-
partments.19,20 However, it is not known whether prohibi-
tins also heterodimerize in other cellular compartments,
similar to mitochondrial prohibitins. Furthermore, the ster-
oid hormones repressor activity of prohibitins is mainly
demonstrated in reproductive tissues such as uterus,21

mammary glands,22 and cell lines derived from reproduct-
ive organs such as prostate cancer cell lines.23 To the best of
our knowledge, it remains unclear whether prohibitins
have similar functions in non-reproductive tissues.
Conversely, it has been reported that prohibitins are also
downstream target genes or mediators of sex steroid hor-
mones in reproductive tissues24,25 and their cell line deriva-
tives.26 Collectively, these evidences suggest that the
relationship between prohibitins and sex steroid hormones
is complex, and both may regulate each other’s function in a
cell type, tissue specific, and context-dependent manner
(Figure 1). It is also possible that this multifaceted relation-
ship between sex steroid hormones and prohibitins is part
of an auto-regulatory loop(s) to maintain tissue homeosta-
sis. The involvement of pleiotropic PHB in the fundamental
aspects of mitochondrial biology, in versatile PI3K-Akt and
MAPK-ERK signaling, and as a co-regulator of steroid
receptor actions creates a unique possibility for a role of
PHB in the crosstalk between metabolic and immune func-
tions in physiological and pathophysiological processes
such as obesity, diabetes, and cancer. In this review, we
will synthesize knowledge related to metabolic and
immune functions of PHB in the light of new evidence
from tissue specific transgenic mouse models of PHB. We
will also provide a viewpoint on some of the early works on
PHB, to get a better sense of its evolution from an anti-pro-
liferative/tumor suppressor gene to a pleiotropic protein
with roles in adipose and immune functions.

PHB as an anti-proliferative/tumor
suppressor gene

Since PHB was discovered as an anti-proliferative gene, the
initial works were primarily focused on the mechanisms
involved in its anti-proliferative function, and its potential
involvement in cancer development. Early on, it was sug-
gested that PHB has cell cycle regulatory activity based on
the observation that microinjection of PHB mRNA blocked
human fibroblasts from entering the S-phase, whereas anti-
sense oligonucleotides stimulated cell cycle progression.27

Later on, the cell cycle regulatory activity of PHB mRNA
was attributed to 30-untranslated region (30UTR) of PHB
mRNA.28 Subsequently, it was reported that a single
nucleotide polymorphism (C-T transition) in the 30UTR cre-
ates a null allele (T allele) lacking the anti-proliferative
activity.29 The T allele was shown to be associated with
increased risk of breast cancer in North American
women.30 However, inconsistency exists in the literature
on the association between PHB T allele and increased
risk of breast, ovarian, and gastric cancers.31–33

Continuous interest in the anti-proliferative property of
PHB led to the discovery of p53 and Rb, two well-known
tumor suppressors,34,35 as PHB interacting partners. The
interaction of PHB with p53 was found to increase the tran-
scriptional activity of p53, whereas co-transfection of an
antisense PHB construct reduced p53-mediated transcrip-
tional activation, in breast cancer cells.34 PHB1 also pre-
vented cell proliferation by binding to Rb and this
interaction repressed the activity of E2F transcription fac-
tors. This effect was also evident when PHB interacted with
other proteins, including histone deacetylase, and the
nucleosome remodeling proteins Brg-1 and Brm,35–37 and
appeared to facilitate channeling of specific signaling path-
ways to the cell cycle machinery. It is unlikely that repres-
sive attributes of PHB are involved in its emerging roles in
adipose and immune functions, which appear to be
mediated through its mitochondrial and plasma mem-
brane-associated functions. Similar to PHB1, some of the
initial works on PHB2 were also focused on cell prolifer-
ation because of its estrogen receptor co-repressor activ-
ity.21,22,38 For example, REA heterozygous mice have been
reported to exhibit faster mammary ductal elongation in
virgin animals, increased lobuloalveolar development
during pregnancy, and delayed mammary gland involution
after weaning.38 It has been suggested that a reduction or
loss of REA function may cause co-activation of estrogen
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Figure 1 The relationship between PHB and sex steroids is complex. Schematic diagram showing the relationship between PHB and sex steroids in the regulation of

each other’s functions is different in reproductive and non-reproductive cells/tissues. (A color version of this figure is available in the online journal.)
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receptors and increase breast cancer risk in humans.38

Interestingly, such studies also led to the finding that
PHB2 is a downstream target gene for estrogen and the
relationship between PHB2 and estrogen is bidirec-
tional.24,25 Subsequently, PHB1 was also found to have
repressor activity and shown to repress androgen action
in prostate cancer cells as well as being a target gene for
androgen.23 However, it remains to be determined whether
PHB1 and PHB2 function as sex steroid receptor-specific co-
repressors or sex steroid receptor neutral co-repressors, and
what is the relevance of this attribute of PHB in non-
reproductive tissues such as adipose and immune cells.

Alterations in PHB protein levels have been reported in
different types of tumors from humans and rodents
models,39–42 which have been associated with both anti-
and pro-tumorigenic roles in a context-dependent manner.
However, the mechanisms involved in these two opposite
functions of PHB remain to be clarified. It is possible that
such conflicting observations are two sides of the same coin
and are due to different post-translational modifications of
PHB. For example, phosphorylation of PHB at tyrosine-114
or threonine-258 residues has been shown to be associated
with opposite effects on PI3K-Akt signaling pathway.13,14 It
is anticipated that a better understanding of the mechan-
isms involved in the regulation of different functions of
PHB will be necessary to clarify the controversy related to
its function in proliferative and anti-proliferative activities
in cells. It would be interesting to know whether prolifera-
tive and anti-proliferative effects of PHB are mediated
through metabolic switches involving its mitochondrial
and membrane signaling functions. This is because meta-
bolic dysregulation is a hallmark of cancer, and PHB is
known to be involved in MAPK-ERK and PI3K-Akt path-
ways, the two predominant signaling arms of insulin/IGF
receptors, which are often dysregulated in cancer cells. In
breast cancer cells, overexpression of PHB leads to upregu-
lation of MAPK-ERK pathways,12 whereas in preadipo-
cytes/muscle cell lines, PHB has been shown to
differentially affect PI3K-Akt signaling in a phosphoryla-
tion-dependent manner.43 Furthermore, PHB and m-PHB
(Y114F-PHB) have differential effects on MAPK-ERK and
PI3K-Akt signaling with and without insulin.43,44 In this
context, it is important to note that tumors from PHB trans-
genic (Mito-Ob) mice showed selective upregulation of
MAPK-ERK signaling,45 whereas tumors from m-PHB (m-
Mito-Ob) mice had selective increase in Akt signaling.46

Taken together, these evidences would imply that the phos-
phorylation of PHB at tyrosine-114 has a role in switching
the modulatory effect of PHB on MAPK-ERK and PI3K-Akt
signaling, and potentially in integrating metabolic aspects
of mitochondrial functions. These findings from Mito-Ob
and m-Mito-Ob mice are consistent with the known infor-
mation in the literature about the role of PHB in these two
signaling cascades.12–14,47 It is possible that the context
dependent effects of PHB on MAPK-ERK and PI3K-Akt
signaling play an important role in switching the metabolic
and mitogenic effects of insulin/IGF signaling cascade in a
tissue specific manner. Collectively, these evidences point
towards a role of PHB in the crosstalk between MAPK-ERK

and PI3K-Akt signaling, and in switching their metabolic
and mitogenic effects.

PHB in metabolic homeostasis

Early indications of a role for PHB in metabolic homeostasis
came from C. elegans. Knockdown of PHB in the worm by
siRNA was found to differentially affect intestinal fat con-
tent in a context-dependent manner.48 For example, siRNA-
mediated knockdown of PHB in C. elegans resulted in
diminished intestinal fat content, whereas an opposite
effect was observed in worms with normal PHB but muta-
tion of dauer formation-2 (daf-2, insulin/IGF signaling
equivalent in C. elegans).48 Extrapolation of this finding in
rodent models and humans would imply that interfering
with PHB function in metabolic tissues might affect meta-
bolic homeostasis differently depending on insulin sensitiv-
ity. This is because PHB is important for mitochondrial
structure and function, and mitochondria are crucial for
normal functioning of tissues involved in metabolic regula-
tion. A similar function of PHB has been reported in cell
culture systems. Overexpression of PHB in preadipocyte
enhances adipocyte differentiation, whereas silencing
PHB results in impairment of mitochondrial function and
attenuates adipocyte differentiation.43,49 Collectively, these
findings would suggest a role for PHB in the functional
regulation of mitochondria during adipogenesis. The
obese phenotype of transgenic mice overexpressing PHB
in adipocytes (Mito-Ob) confirmed that PHB, indeed, has
a role in the regulation of adipose tissue homeostasis, which
appears to be primarily mediated though its mitochondrial
function.50

In addition to adipocytes, PHB may contribute to meta-
bolic homeostasis through its role in pancreatic b-cells. This
is because PHB has important role in mitochondrial func-
tion, which is crucial for b-cell function, and PHB level has
been reported to be upregulated in murine and human pan-
creatic b-cell lines as a protective response to oxidative
stress.51 A drastic loss of insulin secretion and a rapid
onset of type 2 diabetes in b-cell specific Phb2 knockout
mice52 further confirmed a crucial role of PHB2 and poten-
tially PHB1 in pancreatic b-cell function. PHB2 knockdown
often results in a parallel down regulation of its heterodi-
merizing partner PHB1 and vice versa.49,52,53 It is possible
that the pleiotropic attributes of PHB have a role in meta-
bolic homeostasis mediated through its mitochondria-asso-
ciated tissue specific functions such as adipogenesis and
insulin secretion. The role of PHB in cell metabolism
opens a new possibility that the role of PHB in cancer that
has been reported in the literature may be related to its
metabolic function, which may include mitochondrial
and/or membrane signaling functions in a context-depen-
dent manner.

PHB in immune cell function

In addition to the discovery of PHB as an anti-proliferative
gene during liver regeneration in the rat,3 it was also iden-
tified in association with IgM receptor in murine B cells.4

Although, the precise role of PHB in IgM receptor signaling
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remains to be determined, a number of studies have
reported a diverse array of functions for PHB in different
immune cell types. This includes a role as an adaptor mol-
ecule in B cell receptor signaling,54 antigen-stimulated sig-
naling in mast cells,15 and an important protein for
mitochondrial integrity and maturation of T cells.55

Immune cell specific functions of PHB appear to require
its phosphorylation at different residues.15,54,55

Furthermore, PHB has been reported to be involved in
thymic involution during pregnancy in mice.56 This func-
tion of PHB also appears to require phosphorylation of
PHB.56 Expression of PHB from the villin gene promoter
attenuates colonic inflammation in experimental model of
colitis,57 whereas its deficiency promotes inflammation and
increases sensitivity to liver injury.58 Additional evidence
suggesting a role of PHB in immune function came from
studies demonstrating PHB as a host target protein for a
number of pathogens.59–61 A lymphoproliferative pheno-
type, as observed in m-Mito-Ob mice expressing Y114F-
PHB in macrophages and dendritic cells,46is suggestive of
a potential role of membrane signaling function of PHB in
this process. This is because Y114F-PHB upregulates PI3K-
Akt signaling, which plays a role in activation and func-
tional maturation of immune cells.62 However, a potential
role of mitochondrial function of PHB may not be ruled out,
because metabolic switches play an important role in the
activation of immune cells and PI3K-Akt signaling is
known to upregulate mitochondrial function.63 Thus, it is
possible that the membrane signaling and mitochondrial
functions of PHB are mutually exclusive, or interlinked. It
is expected that a better understanding of the mechanisms
involved in the role of PHB in immune cells may advance
our understanding of chronic inflammation in various dis-
eases, such as obesity-linked diabetes and cancer.

Metabolic and immune
dysregulation—Common to obesity-linked
diabetes and cancer

There are numerous evidences in the literature suggesting
obesity is a risk factor for the development of type 2 dia-
betes and certain types of cancer.64–66 The development of
obesity-associated type 2 diabetes has been attributed to
insulin resistance and b-cell insufficiency as a consequence
of adipose tissue dysregulation, including chronic low-
grade adipose inflammation.67 However, the relationship
between obesity and cancer remains unclear. This is because
the relationship between obesity and cancer is more com-
plex and intertwined, than the progression from obesity to
type 2 diabetes (Figure 2). For example, obesity is associated
with substantial metabolic and endocrine abnormalities,
including alterations in sex hormone metabolism, insulin
and insulin-like growth factor (IGF) signaling, and adipo-
kines or inflammatory pathways.68,69 Each one of them is
known to contribute to the development of cancer and all of
them may coexist in the obese state. So, one of the major
challenges is to discern the major drivers from the bystan-
ders. Furthermore, obesity has been linked to more than ten
different types of cancer.70 It is not known how the same set
of abnormalities, which generally comes with obesity, leads

to different types of cancer. In addition to obesity, type 2
diabetes itself is a risk factor for certain types of cancer, and
in patients with type 2 diabetes, cancer may develop with or
without obesity, making it more difficult to discern the main
drivers from the confounders. A closer look at the evidence
available in the literature suggests that evidence for a role of
sex hormone metabolism and of chronic inflammation in
mediating the obesity–cancer relation is strong, whereas
evidence for a role of insulin and IGF signaling is moder-
ate.70 Keeping all these points into consideration, it is highly
likely that the relationship between obesity and cancer is
not linear like obesity-linked type 2 diabetes, which pro-
gresses from obesity through chronic low-grade inflamma-
tion-insulin resistance–b cell insufficiency–type 2 diabetes,
but much more complex and interwoven. In this context,
evidence from Mito-Ob mice and m-Mito-Ob mice provides
a new perspective in the development of obesity-linked
cancer. Because adipocyte and immune cell (macrophages
and dendritic cells) specific functions of PHB were manipu-
lated simultaneously by expressing PHB or m-PHB from
the aP2 gene promoter in these mice, this would imply
that preexisting immune cell dysfunction increases the like-
lihood of obesity-linked cancer development. There are a
number of obese mouse models available, which develop
obesity-related metabolic dysregulation, including type 2
diabetes, but they do not develop obesity-linked cancer
like Mito-Ob and m-Mito-Ob mice. Conversely, Mito-Ob
and m-Mito-Ob mice share obesity and metabolic pheno-
type, but differ in immune phenotype and, as a result,
develop two different, obesity-linked, types of tumor in a
mutually exclusive manner.46,50 Moreover, the development
of adult onset type 1 diabetes or tumor in the male m-Mito-
Ob mice in a mutually exclusive and context-dependent

ObesityObesity T2DT2D

Preexisting immune 
dysregulation & 

obesity

(b)

(a)

CancerCancer

Chronic low-
grade 

inflammation

& insulin 
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Figure 2 Schematic diagram showing known and potential relationship

between obesity-linked type 2 diabetes and cancer. (a) The relationship between

obesity and type 2 diabetes is linear, which progress from obesity-related adi-

pose tissue abnormalities to insulin resistance, b-cell insufficiency, and eventu-

ally type 2 diabetes. (b) Preexisting immune dysregulation may play a role in

obesity-linked cancer development. (A color version of this figure is available in

the online journal.)
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manner46,71 further supports the notion that pre-existing
immune status plays a crucial role in obesity-related dis-
eases, including diabetes and different types of cancer.
Furthermore, it is possible that the development of insulin
resistance as a result of immune dysregulation may be one
of the mechanisms for the development of type 2 diabetes
and its associated cancer in lean subjects.

Sex differences in metabolic and immune
functions

In addition to sexual maturity, puberty is a crucial stage in
life in relation to adipose and immune functions.72 For
example, puberty leads to a significant change in the devel-
opment and distribution of adipose tissue, and sex steroid
hormones have an important role in this process.73

Similarly, puberty is marked by the appearance of sex dif-
ferences in immune functions, with again an important role
of sex steroid hormones.74 There are numerous examples
for this in the literature, from vaccination to malaria and
tuberculosis infection, pre- and post-puberty.74 In general,
males are more susceptible to infectious diseases and
cancer, whereas females are more susceptible to auto-
immune diseases, indicating sex differences in immune
functions. This would imply that marked differences in adi-
pose and immune function that appear during puberty
have long lasting effects in physiology and pathophysi-
ology. Thus, puberty appears to be a defining moment for
sex differences in adipose and immune functions. However,
our precise knowledge of sex steroids and their down-
stream mediators in these fundamental aspects of body
physiology remains limited. It remains unclear whether
sex differences in adipose and immune functions are intrin-
sic to sex steroids, or due to intrinsic differences in target
tissue response, or a combination of both. Irrespective of the
underlying mechanisms involved, a crucial role of sex ster-
oid hormones in adipose and immune functions leads to a
thought provoking question—why do hormones, whose
primary functions are to promote reproductive functions,
have so much influence on metabolic and immune func-
tions? Most importantly, what is the importance of this rela-
tionship between adipose and immune functions during
critical stages of development on metabolic status later in
life, especially overweight and obese conditions? New find-
ings from PHB transgenic mice suggest a crucial role of PHB
in mediating the effects of sex steroids on adipose and
immune functions during the defining moment of puberty,
which warrants further investigations. It is possible that
dysregulation of the intricate relationship between sex ster-
oid hormones and adipose-immune function may be a
major driver in the development of diabetes and cancer
later in life. The appearance of metabolic dysregulation
and lymph node tumor development in the gonadecto-
mized female m-Mito-Ob transgenic mice, despite the
reversal of obesity,46 suggests a crucial role of PHB in med-
iating the effects of sex steroids on adipose and immune
functions at the systemic level. These novel transgenic
mice have created unique opportunities to further define
the relationship between sex steroids and adipose-
immune functions, especially in the context of obesity,

and their relative contribution to the development of obe-
sity-linked diabetes and cancer. It would be interesting to
know whether gender differences in adipose and immune
functions in humans have a role in gender differences in
cancer incidence.

Relative contribution of environmental and
genetic factors in obesity-linked cancer?

There has been a constant debate on the relative contribu-
tion of extrinsic/environmental and intrinsic/genetic fac-
tors in cancer development. This debate was further
reinvigorated after the publication of two recent articles
supporting one or the other view.75,76 An obvious question
in this context would be, which one is operative in obesity-
linked different types of cancer. The development of lymph
node tumors only in m-Mito-Ob may be in favor of intrinsic
factor or so called ‘‘bad luck’’ theory, because Mito-Ob mice
share the metabolic features of m-Mito-Ob mice but they do
not develop lymph node tumors. This would imply that
lymph node tumor development in m-Mito-Ob mice
requires m-PHB.46 However, m-PHB by itself is not suffi-
cient to initiate tumor development and requires metabolic
dysregulation, because female m-Mito-Ob mice that
develop obesity and carry m-PHB do not develop
tumors.46 Thus, obesity-associated abnormalities may facili-
tate the manifestation of preexisting dormant clones, which
may not manifest by themselves. On the other hand, the
development of liver tumors in Mito-Ob mice45 may be in
favor of environmental factor theory, because they develop
tumor in obesity-related hyperinsulinemia-dependent
manner, as female Mito-Ob mice share obese phenotype
with male Mito-Ob mice but do not develop obesity-related
metabolic dysregulation and consequently liver tumor.
However, a possibility remains that obesity-associated
alterations in the liver such as oxidative and mitochondrial
damage may induce genetic changes and facilitate obesity-
linked tumor development. An in-depth analysis of tumor
development in Mito-Ob and m-Mito-Ob mice may shed
new lights on the underlying mechanisms and the relative
contribution of extrinsic and intrinsic factors in obesity-
linked different types of cancer development.

Concluding remarks

A recent report by the WHO-IACR Working Group on obe-
sity-linked cancer concluded that evidence for a role of sex
hormone metabolism and chronic inflammation in mediat-
ing obesity-linked cancer is strong.70 In this context, it is
important to note that sex differences are known to exist
in adipose and immune functions, and in cancer incidence.
The identities of various proteins that mediate sex
dimorphic effects of sex steroid hormones in adipose and
immune function, and biological mechanisms of sex differ-
ences in cancer incidence are largely unknown.
Identification of a common protein in mediating sex differ-
ences in adipocyte and immune cell function is a first step in
a new direction. The discovery of PHB as an important pro-
tein in this context, as revealed by novel transgenic mice,
has opened a new way(s) of looking at the relationship
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between adipose and immune functions and their roles in
disease processes. Till now, the focus has been on direct
interactions between adipocytes and immune cells by
cell–cell contact and via their secreted products such as
adipokine and cytokines, respectively.72 The cell and
tissue type specific diverse functions of PHB suggest a
potential role of pleiotropic proteins in the crosstalk
between adipose and immune functions, which may work
at early events in their crosstalk. Targeting PHB may be a
useful therapeutic approach for the treatment of metabolic
and immune diseases including obesity, diabetes, and
cancer. Further study on role of PHB in various adipose
depots and different immune cell types is crucial, because
it integrates several concepts of metabolic and cell signaling
events in the relation to functional switch in adipocytes and
immune cells in physiological and pathophysiological
processes.
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